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1 Introduction

We study numerical methods for one-dimensional hyperbolic systems of bal-
ance laws (x ∈ R; u ∈ R

N , N ≥ 1) with very stiff source terms:

ut + f(u)x =
1
ε
S(u), 0 < ε << 1. (1)

In particular, we are interested in an inviscid, compressible, reacting flow,
described by the reactive Euler equations:⎛

⎜⎜⎝
ρ
ρu
E
ρz

⎞
⎟⎟⎠

t

+

⎛
⎜⎜⎝

ρu
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ρuz

⎞
⎟⎟⎠

x

=
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ε

⎛
⎜⎜⎝

0
0
0

−ρzK(τ)

⎞
⎟⎟⎠ . (2)

Here, the dependent variables ρ, u, E, and z are the density, velocity, total
energy, and the fraction of unburnt gas, respectively. The pressure is given
by the following equation of state (EOS),

p = (γ − 1) ·
[
E − ρu2

2
− q0ρz

]
, (3)

where the parameter q0 corresponds to chemical heat release, and γ = Const.
On the right-hand side of (2), τ := p/ρ is the temperature and ε is the
reaction time. Finally, the Arrhenius kinetics term, [9], is

K(τ) = e−τc/τ , (4)

where τc is the ignition temperature.
Typically, chemical reaction time scales are much faster than the fluid

dynamical ones. Therefore, in order to fully (numerically) resolve detonation
waves, one has to take both temporal (∆t) and spatial (∆x) grid scales to
be proportional to ε. This may be extremely computationally expensive, or,
in the case of higher spatial dimensions, practically impossible. This is the
reason why we are interested in underresolved numerical methods, where
∆t, ∆x >> ε.
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In such a case, the chemical reaction may be considered infinitely fast,
and thus the Arrhenius kinetics term, (4), may be replaced with (even stiffer)
Heaviside kinetics term, [19],

K(τ) = H(τ − τc) :=
{

1, if τ ≥ τc,
0, otherwise. (5)

Designing an accurate underresolved numerical method for a very stiff
system (2)–(3),(5) or, in general, for the system (1) with a very small ε, is
a rather challenging problem. Since the system is stiff, it is natural that one
may wish to use an operator splitting (fractional step) method. Then, the
step of solving the ODE,

ut =
1
ε
S(u),

reduces to the projection of the computed solution onto an equilibrium state:
u �→ Pu, where S(Pu) ≡ 0, while the corresponding homogeneous system of
hyperbolic conservation laws,

ut + f(u)x = 0, (6)

can be solved by any (stable) shock-capturing method.
However, if the so-called deterministic projection operator is used, this

approach may lead to a spurious weak detonation wave that travels with an
unphysical propagation speed of one grid cell per time step. This occurs since
shock-capturing methods smear shock profiles, and as soon as the unphysical
value of the temperature in this numerical shock layer is above the ignition
temperature, a certain part of the gas gets burnt prematurely. This peculiar
numerical phenomenon was first observed by Colella, Majda and Roytburd
[8] in 1986, and since then it has attracted lots of attention (see, e.g., [5, 7, 12,
16, 17]). In order to fix this numerical problem, the ignition temperature was
artificially increased in [6], or replaced with uniformly distributed random
variable (random projection method by Bao and Jin, [2, 3]). Other, more
complicated, but rather successful approaches have been proposed in [10, 13,
18].

In this paper, we introduce an accurate deterministic projection
(ADP) method for balance laws with stiff source terms, which may be con-
sidered as a simple and robust alternative to the aforementioned approaches.
The key idea is to evolve u according to the homogeneous system (6) (this
will guarantee the correct propagation speed!), while using the projected val-
ues of ũ := Pu only whenever they are required (for example, for computing
p in the EOS, (3), when the system (2)–(3),(5) is considered).

The paper is organized as follows. In §2, we introduce the ADP approach
for a model scalar problem. In §3, we apply the ADP method to the reactive
Euler equations.
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2 Scalar Problem

We consider the following scalar hyperbolic balance law with a stiff source
term, studied in [16, 2, 4, 11],

ut + f(u)x =
1
ε
(u − α)(1 − u2), −1 < α < 1, (7)

subject to a ”prepared”, piecewise constant initial data,

u(x, 0) =: u0(x) =
{

1, if x ≤ x0,
−1, if x > x0.

(8)

Here, 0 < ε ≤ 1 is a small parameter, f is a convex flux function, and
x0 is a given point. This is a ”toy model”, where one can easily see the
major difficulty we encounter while dealing with hyperbolic problems with
stiff source terms.

The source in (7) admits three equilibria: two of them, u = ±1, are
stable, and the third one, u = α, is unstable. The exact solution is the shock
discontinuity,

u(x, t) =
{

1, if x ≤ x0 + st,
−1, if x > x0 + st,

(9)

where the shock speed, determined by the Rankine-Hugoniot condition, is

s =
f(1) − f(−1)

2
. (10)

Note that the speed is independent of α, and that the solution of the initial
value problem (IVP) (7)–(8) is identical to the solution of the corresponding
homogeneous equation,

ut + f(u)x = 0, (11)

with the same initial data (8).
Let us now consider the operator splitting method for the IVP (7)–(8).

We denote by SC(·) the solution operator, associated with the homogeneous
convection equation (11), and by the SR(·) the solution operator of the stiff
(reaction) ODE,

ut =
1
ε
(u − α)(1 − u2). (12)

Assume that the solution of (7)–(8) at time level t = tn, u(x, tn), is given.
According to the operator splitting technique, the solution at time tn+1 =
tn + ∆t, u(x, tn+1), is then approximated by

un+1(x) = SR(∆t)SC(∆t)u(x, tn).

In fact, if one uses the exact solution operators, SR and SC , this approxima-
tion will be exact, that is un+1(x) ≡ u(x, tn+1).
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However, in practice one has to use approximate solution operators in-
stead of the exact ones. Let S̃C(∆t) corresponds to one step of a shock-
capturing method. In the studied case of the underresolved numerical method
(ε << ∆t), the second approximate solution operator, S̃R(∆t), will be re-
duced to the following projection operator:

S̃R(∆t)w ≡ Pαw :=
{

1, if w > α,
−1, if w ≤ α,

∀w ∈ R. (13)

When S̃C(∆t) is applied to the solution
{
un

j ≈ u(xj , t
n)

}J

j=1
, computed

at time tn, the resulting shock profile, u∗ = S̃C(∆t)un, will be smeared. If
the projection operator is applied to u∗, it will result in the following step
function (assuming, for simplicity, that the approximate solution operator S̃C

is monotone):

un+1
j =

{
1, if u∗

j > α,
−1, if u∗

j ≤ α,
∀j.

Let us compare
{
un

j ≈ u(xj , t
n+1)

}J

j=1
with

{
un

j ≈ u(xj , t
n)

}J

j=1
. Depending

on α and on the values of u∗
j in the numerical shock layer, the shock location

may be shifted by several grid cells to the right (or to the left), or it may
remain at the same location as at time tn. Next time step of such a “standard”
deterministic projection method will result in exactly the same move of the
shock, and so on. As a result, we obtain a shock that propagates with an
artificial speed of several cells per time step, which is, in general, not equal
to the physically correct speed given by (10).

We propose a very simple ADP method that allows to capture the location
of the discontinuity accurately (within the accuracy of a shock-capturing
scheme used). Our approach can be schematically presented in the following
operator form:

uN = PαS̃C(T )u0, (14)

where T = N∆t is a final time, and S̃C(T ) = S̃C(∆t)◦ . . . ◦ S̃C(∆t)◦ S̃C(∆t).
If S̃C(·) corresponds to a convergent method for the homogeneous IVP

(11),(8), then the intermediate solution, u∗ := S̃C(T )u0, will be a (smeared)
approximation to the exact solution, (9), where the width of the numerical
shock layer is typically of size O(∆x). The projection, Pαu∗, will then result
in a step function with a discontinuity, located within O(∆x) from the exact
location (x = x0 + sT ).

In Figures 1a,b, we present both accurate solutions, computed by the pro-
posed ADP method, (14), and inaccurate solutions, computed by the “stan-
dard” deterministic projection method,

un+1 = PαS̃C(∆t)un,

with the same approximate solution operator S̃C . In these examples, the flux
is f(u) = u + u2/2, and α is taken to be 0.5 and −0.75, respectively. The
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initial discontinuity is placed at x0 = 0.3; ∆x = 0.02, ∆t = 0.01, the final
time is T = 0.6 (60 time steps), the correct shock speed is 1/2.

These numerical examples clearly demonstrate the accuracy and robust-
ness of the ADP method for the considered scalar problem.
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Fig. 1. The solutions of the IVP (7)–(8) with (a) α = 0.5, (b) α = −0.75

3 Detonation Waves

In this section, we develop the ADP method for the reactive Euler equations.
First, note that system (2) can be viewed as the homogeneous system,⎛

⎝ ρ
ρu
E

⎞
⎠

t

+

⎛
⎝ ρu

ρu2 + p
u(E + p)

⎞
⎠

x

= 0, (15)

coupled (through the EOS (3)) with the inhomogeneous equation, describing
the propagation of the interface between the burnt and unburnt species,

(ρz)t + (ρuz)x = −1
ε
ρzK(τ). (16)

Thus, when solving system (15)–(16), the operator splitting (and hence, a
projection step) should be applied only to equation (16). It is known, [8],
that the “standard” projection may lead to spurious, unphysical shock waves
traveling with an artificial speed (similarly to the scalar case in §2). Utilizing
the ADP method allows one to avoid such an undesirable situation.

3.1 The ADP Method for Stiff Detonation Waves

Unfortunately, the method, described in §2, cannot be applied to the reac-
tive Euler equations straightforwardly, since at every time step we need to
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know the projected values of z (which have to be equal to either 0 or 1) for
computing p in the EOS (3)). In this case, the accurate projection procedure
can be implemented as follows.

Assume that we have computed a solution at time level t = tn. After
the convection step, we obtain

{
z∗j

}J

j=1
, which are then projected by the

deterministic projection operator:

z̃n+1
j = Pτc(z

∗
j ) :=

{
1, if τn

j ≥ τc,
0, if τn

j < τc.
(17)

These values (not the smeared values of z∗j , computed by the shock-capturing
method!) are to be used in the EOS, and thus, for the evolution of ρ, ρu,
and E by solving (15). At the same time, in order to avoid appearance of
nonphysical waves, the non-projected values,

zn+1
j := z∗j ,

should be used for the evolution of ρz via the corresponding homogeneous
equation,

(ρz)t + (ρuz)x = 0. (18)

Remark 1. Note that at every time level we keep two sets of values of z:{
zn

j

}J

j=1
and

{
z̃n

j

}J

j=1
.

Remark 2. The ADP method for the reactive Euler equations resembles the
level set method, used in multifluid computations (see, e.g., the review paper
[1] and the references therein): we use equation (18) to track the interface
between the burnt and unburnt species. However, unlike the multifluid situ-
ation, here both z and u are discontinuous at the interface.

Remark 3. In fact, due to the specific structure of the stiff system (15)–(16),
the ADP method for the reactive Euler equations can be simplified even fur-
ther. Note that the values of zn+1

j ≡ z∗j are used neither in the homogeneous
system (15), nor in the EOS (3) that couples system (15) with equation (18).
Indeed, one may completely avoid solving equation (18), since the projection,
carried out in (17), also does not employ smeared (and thus, unphysical) val-
ues of z∗j . The latter ensures that the computed location of the interface will
always be O(∆x) away from the exact one, provided a numerical method,
used for solving the homogeneous system (15), converges to its correct en-
tropy solution.

Remark 4. The proposed method can be implemented with one’s favorite
hyperbolic solver. In the presented numerical examples (both in §2 and §3.2),
we have used the second-order central-upwind scheme from [15].
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3.2 Numerical Examples

In this section, we demonstrate the performance of the proposed ADP method
by applying it in a rather complicated situation, where a detonation wave
collides with a shock, a contact discontinuity, and a rarefaction wave. This
example is taken from [14, 3].

The parameters are:

γ = 1.2, q0 = 50, τc = 3,
1
ε

= 230.75.

The initial data are:

(ρ, u, p, z)(x, 0) =

⎧⎨
⎩

(ρl, ul, pl, 0), if x ≤ 10,
(ρm, um, pm, 1), if 10 < x ≤ 40,
(ρr, ur, pr, 1), if x > 40,

where ρl = 3.64282, ul = 6.2489, pl = 54.8244; ρm = 1, um = 0, pm = 1; and
ρr = 4, ur = 0, pr = 10. These data correspond to a right moving detonation,
a left moving shock, a stationary contact, and a right moving rarefaction. A
series of collisions occur after the detonation catches up with the other waves.

We compare the solutions, computed by the ADP method and by the
“standard” deterministic projection method. In both cases, we take ∆x =
0.125 and ∆t = 0.005. The reference solution is computed using the fully
resolved calculation with ∆x = 0.005 and ∆t = 0.00025.

In Figure 2, we show the computed solutions (density, pressure, temper-
ature, and fraction of unburnt gas) at time T = 2 (before collisions). At this
time, both methods provide rather accurate approximations.

The results at a later time T = 4 (after the collision with the shock,
but before the collision with the rarefaction wave) are shown in Figure 3. At
this time, only the density is sufficiently accurately captured by the “stan-
dard” deterministic projection method, while an unphysical shock wave has
already appeared in the other components. At the same time, the location
and amplitude of discontinuities, obtained by the ADP method, are correct.

Finally, in Figure 4, we present the results obtained at time T = 8 (after
all collisions). The computations with the “standard” method are now com-
pletely wrong, while the resolution, achieved by the ADP method, is as high
as at the smaller times.

Remark 5. We have also tested the ADP method on a variety of examples
taken from [2, 3]. The physically correct solutions have been accurately cap-
tured in all the performed numerical experiments.

Acknowledgement. The author thanks the participants of the applied and compu-
tational mathematics seminar at Tulane University for a number of stimulating
discussions. This work was supported in part by the NSF Grant DMS-0073631.
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Fig. 2. T = 2

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70 80 90 100

DENSITY

REFERENCE SOLUTION
THE ADP METHOD
’’STANDARD’’ DP

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

PRESSURE

REFERENCE SOLUTION
THE ADP METHOD
’’STANDARD’’ DP

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80 90 100

TEMPERATURE

REFERENCE SOLUTION
THE ADP METHOD
’’STANDARD’’ DP

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

FRACTION OF UNBURNT GAS

REFERENCE SOLUTION
THE ADP METHOD
’’STANDARD’’ DP

Fig. 3. T = 4
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Fig. 4. T = 8
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